Механическая обработка титана. Обработка резанием титановых сплавов Вредность при механической обработке титановых сплавов

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Технология профессиональной токарной обработки титана сопряжена с рядом трудностей. Они обусловлены изначальными свойствами материала, которые напрямую влияют на выбор режима работы и инструмента.

Трудности обработки титана

Титан — это легкий металл с серебристым оттенком. Помимо превосходной механической стойкости практически не подвержен ржавлению. Это связано с формированием пассивирующей оксидной пленки TiO2. Процесс разрушения происходит только в щелочных средах.

Перед обработкой титана следует ознакомиться с его свойствами. Главная проблема заключается в высоких прочностных характеристиках этого металла. До недавнего времени считалось, что невозможно выполнить эффективный процесс резания титана на обычном токарном станке. В большинстве случаев инструмент быстро изнашивался, а качество обработки оставляло желать лучшего.

Это напрямую связано со следующими факторами:

  • высокий показатель вязкости. В процессе резания происходит значительное повышение температуры в узкой области. В результате этого происходит налипание частиц металла на фрезу или сверло;
  • титановая пыль имеет свойство взрываться. Это же относится и к стружке. Поэтому во время обработки следует соблюдать все меры безопасности;
  • минимальная мощность оборудования. Для оптимизации процессов рекомендовано применять комплексные обрабатывающие станки. Они выполняют одновременно несколько операций, тем самым уменьшая вероятность появления вышеописанных факторов. Однако это влечет за собой удорожание оборудования.

Кроме этого, следует учитывать низкую теплопроводность материала. Практически все марки металлов и абразивов растворяются в титане. Поэтому следует выбрать специальный режущий инструмент, а также предварительно рассчитать режим его применения.

После окончательного изготовления детали она должна пройти процесс высокотемпературного оксидирования. Заготовку нагревают, а затем она проходит процесс охлаждения на открытом воздухе, это повышает износоустойчивость.

Режимы токарной обработки титана

Токарная обработка изделий из титана выполняется с применением специальных режущих инструментов. Существуют три основных этапа работ: предварительный, промежуточный и окончательный.

Для выбора оптимального режима работы необходимо знать основные технические параметры обработки. Они зависят от угла расположения инструмента в плане (Kr), величины подачи (Fn) и скорости резания (Ve). Для контроля температурного нагрева можно изменять скорость вращения заготовки, толщину образовавшейся стружки и глубину резания.

  • черновая – до 10 мм. Она применяется для удаления неравномерной корки на титане. С ее помощью происходит формирование кольца-свидетеля, которое отрезается для анализа состояния материала по всей глубине заготовки. Рекомендуемые параметры: Kr – 3-10 мм; Fn – 0,3-0,8 мм; Ve – 25 м/мин;
  • промежуточная – от 0,5 до 4 мм. Этот этап необходим для подготовки детали к окончательному резанию. В процессе может изменяться глубина резания, материал не должен содержать корки. Обязательно необходимо оставить припуск 1 мм для окончательного этапа. Рекомендуемые параметры: Kr – 0,5-4 мм; Fn – 0,2-0,5 мм; Ve – 40-80 м/мин;
  • окончательная – 0,2-0,5 мм. На этом этапе выполняется окончательное удаление припусков, происходит формирование детали. К нему предъявляются высокие требования. Во время его выполнения следует максимально точно рассчитать режимы: Kr – 0,25-0,5 мм; Fn – 0,1-0,4 мм; Ve – 80-120 м/мин.

При увеличении глубины резания необходимо снижать значение подачи. На криволинейных участках значение этого параметра может составить 50% от номинального.

Выбор инструмента для токарной обработки титановых сплавов

Важным моментом является правильный выбор токарного инструмента. Зачастую для этого применяют резцы со сменной режущей частью. Они могут иметь различную форму, которая определяет угол и степень обработки титана.

Выбор определенной модели резца зависит от текущего режима работы и характеристик оборудования. Но существуют общие рекомендации по форме и материалу изготовления режущего инструмента:

  • предварительная. Применяются пластины квадратной или круглой формы (с большим диаметром). Рекомендуемый размер — iC19. В качестве материала изготовления лучше всего использовать сплав H13A без покрытия;
  • промежуточная. Оптимальным вариантом являются круглые пластины. Для уменьшения теплового эффекта глубина вхождения резца не должна превышать 25% от диаметра инструмента. Используемые сплавы для изготовления — H13A (без покрытия) и GC1115 с PDV покрытием. Последний вариант позволит добиться оптимального соотношения точности и износоустойчивости инструмента;
  • окончательная. Применяются пластины с шлифованными режущими кромками. Применяемые сплавы: H13A (без покрытия); GC1105 (PVD, с острыми кромками); CD10 (PCD).

Для выполнения последнего этапа необходим точный станок с функцией подачи охлажденной жидкости под высоким давлением. При формировании тонкостенных деталей снижается радиальная составляющая силы резания.

В видеоматериале даются практические советы по обработке титана:

Резка и мех.обработка

Титан и его сплавы плохо обрабатываются резанием, что обусловлено рядом физико-механических свойств титана. Титановые сплавы отличаются высоким отношением предела текучести к временному сопротивлению разрыва. Это соотношение составляет для титановых сплавов 0,85-0,95, в то время как для сталей оно равно 0,65-0,75. В итоге при механической обработке титановых сплавов возникают большие удельные усилия, что приводит к высоким температурам в зоне резания, обусловленным низкой тепло- и температуропроводностью титана и его сплавов, затрудняющей отвод тепла из зоны резания. Из-за сильной адгезии и высоких температур титан налипает на режущий инструмент, что вызывает значительные силы трения. Налипание и приваривание титана на контактируемые поверхности режущего инструмента приводят также к изменению его геометрических параметров. Отклонение геометрических параметров режущего инструмента от оптимальных их значений приводит к дальнейшему повышению усилий обработки и температуры в зоне резания и износа инструмента. Температура в зоне резания наиболее сильно повышается с увеличением скорости резания, в меньшей степени - с увеличением подачи. Глубина резания по сравнению со скоростью и подачей оказывает еще меньшее влияние.

Трудоемкость механической обработки титановых сплавов в 3-4 раза больше, чем для углеродистых сталей, и в 5-7 раз выше, чем для алюминиевых сплавов.

По данным ММПП "Салют", коэффициент относительной обрабатываемости по отношению к стали 45 составляет 0,35-0,48 для титана и сплавов ВТ5 и ВТ5-1 и 0,22-0,26 для сплавов ВТ6, ВТ20 и ВТ22. При механической обработке титановых сплавов рекомендуются малые скорости резания при небольших подачах с обильной подачей охлаждающей жидкости. Для обработки титановых сплавов резанием применяют режущий инструмент из более износостойких быстрорежущих сталей, чем для обработки сталей, отдавая предпочтение твердым сплавам. Однако даже при соблюдении всех описанных мероприятий режимы резания, особенно скорости, должны быть снижены по сравнению с обработкой сталей в 3-4 раза для обеспечения приемлемой стойкости инструмента, особенно при обработке на станках с ЧПУ.

Усилия резания и температуры в зоне резания могут быть существенно снижены механоводородной обработкой, включающей в себя наводороживание, механическую обработку и вакуумный отжиг. Легирование титановых сплавов водородом приводит к значительному снижению температур в зоне резания, уменьшению сил резания, повышению стойкости твердосплавного инструмента в 2-10 раз в зависимости от режимов резания и природы сплава. Этот позволяет повысить скорость резания в 1,5-2 раза при сохранении других параметров резания или применять более высокие подачи и глубины резания, не меняя скорости резания.

При высоких температурах, которые развиваются в зоне резания, титановая стружка и обрабатываемая деталь окисляются. Окисление стружки создает проблемы, связанные с её очисткой при вовлечении отходов в плавку и других способах её утилизации. Окисление поверхности обрабатываемых деталей в недопустимой степени может привести к снижению эксплуатационных характеристик.

При изготовлении деталей и конструкций из титановых сплавов применяют все виды механической обработки: точение, фрезерование, сверление, шлифование, полирование.

Важной особенностью механической обработки деталей из титановых сплавов является необходимость обеспечения ресурсных, в особенности усталостных, характеристик, которые в решающей степени обусловлены качеством поверхностного слоя, образующегося после обработки резанием. Вследствие низкой теплопроводности и высокой химической активности обрабатываемого материала применение шлифования как процесса финишной обработки для титановых сплавов ограничено. При шлифовании титановых сплавов легко образуются прижоги, которые существенно снижают усталостную прочность. Кроме того, при шлифовании в поверхностном слое возникают остаточные напряжения растяжения и дефектные структуры, также снижающие усталостную прочность. Поэтому шлифование, если оно используется при обработке деталей из титановых сплавов, должно проводиться при пониженных скоростях и по возможности заменяться лезвийной обработкой либо низкоскоростными методами абразивной обработки, такими, например, как хонингование. Если же применяется шлифование, оно должно выполняться при строго регламентированных режимах с последующим контролем на отсутствие прижогов и сопровождаться упрочнением поверхностным пластическим деформированием (ППД).

Из-за больших усилий резания для механической обработки титана и его сплавов применяют, в основном, станки крупных моделей (ФП-7, ФП-9, ФП-27, ВФЗ-М8 и др.). Наиболее трудоемким процессом при изготовлении деталей является фрезерование. Особенно большие объемы фрезерных работ приходятся на изготовление силовых деталей каркаса самолета: шпангоуты, траверсы, лонжероны, нервюры, балки.

При разработке и внедрении технологии механической обработки деталей из титановых сплавов достаточно широко используются малооперационные технологические процессы за счет совмещения нескольких операций в одну при выполнении её на одно- и многоинструментальном оборудовании. Эти технологические операции наиболее целесообразно выполнять на многооперационных станках (обрабатывающих центрах). Так, например, силовые детали из штамповок изготавливают на станках ФП-27С, ФП-17СМН, МА-655А; детали типа "корпус", "колонка", "кронштейн" из штамповки и фасонной отливки - на станках МА-655А, Me-12-250, "Горизон", панели из листа - на станке ВФЗ-М8. На этих станках при обработке многих деталей реализуется принцип "максимальной" законченности обработки в одной операции, что достигается установкой на стол станка одновременно нескольких различных приспособлений с последовательной обработкой детали с двух и более сторон по одной программе.

Фрезерование переменных малок при изготовлении деталей типа "нервюра", "балка", "траверса" осуществляется несколькими методами:
1) на универсально-фрезерных станках с помощью специальных механических или гидравлических копиров;
2) на гидравлических копирно-фрезерных станках по копирам;
3) на трехкоординатных станках с ЧПУ:
- специальными сборными фрезами с изменяемым в процессе обработки углом;
- фасонными выпуклыми и вогнутыми радиационного профиля фрезами;
- концевыми фрезами с приведением к цилиндрической поверхности путем наклона детали к плоскости стола под определенным углом;
4) на многокоординатных станках с ЧПУ типа ФП-14, ФП-11, МА-655С5.

Для механической обработки авиационных материалов в нашей стране разработан ряд станков, соответствующих лучшим мировым образцам, а иногда и не имеющих аналогов в мировой практике:
- продольно-фрезерный трехкоординатный трехшпиндельный станок ВФ-33 с ЧПУ, предназначенный для одновременной обработки тремя шпинделями монорельсов, панелей, балок, нервюр и других деталей легких и тяжелых самолетов;
- продольно-фрезерный четырехкоординатный трехшпиндельный станок 2ФП-242В с двумя подвижными порталами и ЧПУ, предназначенный для обработки крупногабаритных панелей и лонжеронов переменной малкой для широкофюзеляжных и тяжелых самолетов;
- горизонтально-фрезерно-расточный пятнадцати координатный с ЧПУ станок ФРС-1 с подвижной колонной; он предназначен для обработки стыковых поверхностей крыла и центроплана широкофюзеляжных самолетов;
- гибкий производственный модуль СГПМ-320, включающий в себя токарный станок с ЧПУ АТ-320 с магазином на 13 инструментов и автоматический манипулятор установки и съема детали, управляемые от ЧПУ;
- гибкий производственный комплекс АЛК-250, предназначенный для изготовления прецизионных корпусных деталей гидроагрегатов.

Для обеспечения оптимальных условий резания и высокого качества поверхности деталей следует строго соблюдать геометрические параметры инструмента из быстрорежущих сталей и твердых сплавов.

Точение кованых заготовок осуществляется резцами с пластинками из твердого сплава ВК8. При обработке по газонасыщенной корке рекомендуют следующие геометрические параметры резцов: передний угол γ=0°; задний угол α = 12°; главный угол в плане φ1 = 45°, вспомогательный угол в плане φ = 14°. Режимы резания: скорость резания v = 25 - 35 м/мин, подача s = 0,5 - 0,8 мм/об, глубина резания t не менее 2 мм.

При чистовом и получистовом непрерывном точении применяют инструмент из твердых сплавов ВК4, ВК6, ВКбм, ВК8 и др. при подаче s = 0,1 - 1,0 мм/об, скорости резания v = 40 - 100 мм/мин и глубине резания t = 1 - 10 мм. Возможно также применение инструмента из быстрорежущей стали (Р9К5, Р6М5К5, Р9М4К8). Рекомендуемые геометрические параметры резцов из быстрорежущей стали: задний угол α = 10°, φ = 15°, радиус при вершине r = 1 мм. Режимы резания при точении титана v = 24 - 30 м/мин, s t = 0,5 - 3 мм.

Фрезерование титана и его сплавов затруднено из-за налипания титана на зубья фрезы и их выкрашивания. Для рабочих частей фрез применяют твердые сплавы ВК4, ВК6М, ВК8 и быстрорежущие стали Р8МЗК6С, Р9К5, Р9К10, Р6М5К5, Р9М4К8. При фрезеровании титана фрезами с пластинками из сплаваВК6М рекомендуют следующие режимы резания: s = 0,08 - 0,12 мм/зуб, v = 80 - 100 м/мин, t = 2 - 4 мм.

Сверление титана и его сплавов также осуществляется с трудом из-за налипания стружки титана на рабочие поверхности инструмента и ее скопления в отводящих канавках сверла, что приводит к сильному повышению сопротивления резания и быстрому износу сверл. Поэтому при сверлении глубоких отверстий необходимо периодически выводить инструмент для очистки его от стружки. Для сверления применяют инструмент из быстрорежущих сталей Р9К5, Р9К10, Р18Ф2, Р9Ф5, Р6М5К5, Р9М4К8, Р12Ф2К8МЗ и твердого сплава ВК8. Рекомендуемые геометрические параметры сверл: φ = 0 - 3°, α = 12 - 15°, = 120 - 130°, 2φ0 = 70 - 80°, угол наклона спиральной канавки 25-30°.

Для увеличения производительности механической обработки титановых сплавов резанием и повышения стойкости режущего инструмента применяют галлоидосодержащие смазывающе-охлаждающие жидкости типа РЗ СОЖ-8. Охлаждение обрабатываемых деталей осуществляют методом обильного полива. Использование галлоидосодержащих жидкостей при механической обработке приводит к образованию на поверхности титановых деталей солевой корки, которая при повышенных температурах и одновременном действии напряжений вызывает солевую коррозию. Поэтому детали, обрабатываемые с применением РЗ СОЖ-8, после механической обработки подвергают облагораживающему травлению со снятием поверхностного слоя толщиной 0,005-0,010 мм. При сборочных и механосборочных операциях не допускают применения РЗ СОЖ-8.

Обрабатываемость титановых сплавов резанием существенно зависит от их химического и фазового состава, типа и параметров микроструктуры. Наиболее трудно обрабатываются резанием титановые полуфабрикаты и детали с грубой пластинчатой структурой. Такую структуру имеют, в частности, фасонные отливки. Кроме того, фасонное литье из титана и его сплавов имеет на поверхности газонасыщенную корку, которая сильно изнашивает инструмент.

Шлифование титановых деталей связано с определенными трудностями, что обусловлено высокой склонностью к контактному схватыванию при трении. Относительно тонкая оксидная пленка на титане легко разрушается при трении под воздействием высоких удельных нагрузок в точках контакта из-за более высокой пластичности титана по сравнению с оксидной пленкой. При трении в точках контакта двух поверхностей происходит активный перенос обрабатываемого материала на инструмент - "схватывание". Этому способствуют и другие свойства титана: повышенная упругая деформация из-за сравнительно низкого модуля упругости, более низкая теплопроводность. Благодаря выделению теплоты трущаяся поверхность обогащается газами из окружающей среды и происходит образование оксидных пленок, что повышает прочность поверхностного слоя.

При обработке титановых сплавов применяют шлифование абразивными кругами и ленточное шлифование. Для титановых сплавов наибольшее распространение в промышленности получили абразивные круги из зеленого карбида кремния, обладающего большими твердостью и хрупкостью, стабильностью физико-механических свойств и более высокой абразивной способностью, чем черный карбид кремния.

Основным способом окончательной обработки сложных криволинейных поверхностей деталей из титановых сплавов является ленточное шлифование. К преимуществам применения абразивных лент при формообразовании сложных фасонных поверхностей относится возможность обработки с линейным или поверхностным контактом между инструментом и обрабатываемой поверхностью, что значительно сокращает число формообразующих движений станка.

Обработку деталей с линейным контактом осуществляют методом обкатки. При обработке деталей методом обкатки форма инструмента сопряжена с формой обрабатываемой поверхности детали. Формообразование обрабатываемой поверхности происходит путем обкатки детали по заданной траектории вокруг.

Шлифование методом обкатки, например лопаток компрессора ГТД, производят абразивными кругами (сопряженное шлифование) или широкой абразивной лентой на станках ХШ-185, ХШ-186, MB-885, 381ЗД. При соответствующем подборе ширины ленты одновременно шлифуется вся обрабатываемая поверхность с одной стороны. Этот метод отличается высокой производительностью, и его широко применяют в промышленности при шлифовании деталей небольших размеров. Для лопаток с длиной пера более 120 мм наиболее рациональным является строчечный метод обработки узкой абразивной лентой, позволяющий достигать большой точности. Строчечный метод шлифования применяется в станках 4ШСЛ-7, ЛШ-1, ЛШ1А, ЛШ2. Обработку на них производят продольными строчками, причем направление подачи детали перпендикулярно плоскости перемещения абразивной ленты.

Продольная подача детали s осуществляется за счет возвратно-поступательного перемещения стола станка. Дискретное вращение заготовки вокруг оси обеспечивает круговую подачу s . При обработке на станке ЛШ-1 устанавливается определенная сила контактного давления Р между обрабатываемой заготовкой и абразивной лентой, которая регулируется компенсирующими пружинами.
Сложной операцией является шлифование пересекающихся поверхностей деталей, сопряженных по радиусу (например, поверхностей прикомлевых участков лопаток компрессора), которое выполняют методами обкатки и копирования. При формообразовании поверхностей методом копирования рабочие поверхности контактного копира должны быть эквидистантны на толщину абразивной ленты обрабатываемым поверхностям. Ширина ленты может превышать ширину обрабатываемой поверхности или составлять часть ее. В последнем случае формообразование радиусных участков производится поперечным движением лент относительно детали. В промышленности по этому принципу работает много станков: ЗЛШ-5 (ЗЛШ-52), ЗЛШ-9 (ЗЛШ-91) и др. Обрабатываемая деталь подается по нормали к поверхности на врезание под действием силы 50-100 Н к контактному копиру, который огибает абразивная бесконечная лента. Сила натяжения ленты составляет 10-30 Н на 10 мм ширины ленты. При обработке поверхностей с малым радиусом сопряжений стойкость лент существенно уменьшается.

До последнего времени полагали, что шлифовать титановые сплавы алмазными кругами неэффективно из-за химического сродства титана и углерода, что приводит к сильному изнашиванию режущих кромок алмазных зерен и последующему засаливанию поверхности инструмента. К тому же при алмазном шлифовании в поверхностном слое формируются остаточные растягивающие напряжения. К настоящему времени удалось создать алмазные круги на специальных металлических связках, которые синхронизировали процесс сглаживания режущих кромок зерен с их выкрашиванием из связки и обновлением рабочей поверхности инструмента, т.е. обеспечили самозатачивание алмазного круга. Алмазное шлифование успешно применяется на ММПП "Салют" при шлифовании пера лопаток компрессора.

Разновидностью алмазного шлифования является обработка детали с наложением постоянного тока. Шлифование осуществляют в электролите, при этом алмазный круг служит анодом. Анодное растворение связки круга и титана на поверхности круга позволяет поддерживать постоянные режущие свойства круга. Электрохимическое алмазное шлифование, как правило, формирует в поверхностном слое обрабатываемой детали благоприятные сжимающие напряжения.

Механическая резка, обработка титана и титаносодержащих сплавов предъявляет очень высокие требования к оборудованию и накладывает определенные ограничения на использование стандартных технологий. Для титана характерен значительный коэффициент отношения прочности к весу в сочетании с небольшим модулем упругости. По этой причине материал при механическом воздействии генерирует концентрированные силы резания, в свою очередь, вырабатывающие сильные вибрации. Неудовлетворительная теплопроводность провоцирует образование избыточной тепловой энергии в зоне реза, что может привести к деформационному упрочению готовых изделий. При механической резке, обработке титановых сплавов важную роль играют ресурсные (в особенности усталостные) характеристики, напрямую зависящие от свойств поверхностного слоя. На степень обрабатываемости материала влияет не только его химическая составляющая, но и особенности микроструктуры. Наибольшую сложность представляет резка и сверление грубых пластинчатых сплавов с газонасыщенным верхним слоем. Трудоемкость процесса в 3-4 раза превосходит аналогичные показатели сплавов из углеродистых сталей, в 5-7 раз – показатели алюминия. Для снижения энергозатрат необходимо соблюдение следующих условий:

  • применение качественного режущего инструмента, изготовленного из твердых сплавов либо прочной стали;
  • использование минимальных оборотов станка;
  • непрерывная подача охлаждающих жидких составов.

Виды механической обработки титана

Среди способов механической обработки титана выделяют резку, фрезеровку, шлифовку и сверление.

Резка титана

Уровень прочностных показателей титаносодержащих сплавов крайне осложняет их резку. Из-за высокого коэффициента соотношения предела текучести к длительности сопротивления разрыву (примерно 0,85-0,95) механическая резка титана требует значительных энергозатрат. Недостаточная теплопроводность провоцирует стремительное и неравномерное повышение температуры в зоне реза, что усложняет процесс охлаждения. Адгезия способствует накоплению стружки на режущей кромке, что увеличивает силу трения. Прилипание отработанных частиц материала в местах прямого контакта меняет заданную геометрию режущих приспособлений. Любые отклонения от заданной конфигурации провоцируют дальнейшее увеличение прилагаемых усилий и повышение уровня нагрева. Под влиянием высоких температур запускается процесс окисления - образовавшая пленка значительно ухудшает эксплуатационные свойства изделий. Уровень нагрева заготовки зависит от трех факторов (по убыванию значимости):
  • скорость резания,
  • сила подачи,
  • глубина реза.
Для поддержания оптимальной температуры в зоне реза используют водородное легирование. Увеличенное содержание водорода в сплаве позволяет понизить силу реза и в несколько раз увеличить износоустойчивость твердосплавной фрезы (показатель зависит от природы сплава и выбранной технологии резки). Добавление водорода дает возможность сократить сроки обработки в два раза, не потеряв при этом в качестве. Азотирование или оксидирование деталей создает на поверхности сплава тончайшую пленку, способную препятствовать задиранию слоев и образованию избыточной стружки.

Фрезерование титана

Фрезерование считают самой трудоемкой операцией при изготовлении деталей из титановых сплавов. Механическая обработка титана предполагает использование тяжелых фрезеровочных станков высокой мощности. Различают несколько видов усиленных фрез:
  1. Вогнутые или выпуклые фасонные.
  2. Сборные (с регулируемым углом).
  3. Концевые (с возможностью подводки под определенным углом).

Сверление титана

Процесс сверления титана сопровождается активным налипанием мельчайшей стружки на рабочую поверхность инструмента, что провоцирует засорение отводящих каналов сверла. В итоге сопротивление материала усиливается, режущая кромка быстро выходит из строя. Во избежание поломок требуется проводить периодическое очищение инструментария и использовать оборудование из твердых металлов.

Шлифовка титана

Специфические свойства титановых сплавов затрудняют финишную обработку. Под влиянием силы трения связи в оксидной пленке быстро разрушаются; в точках соприкосновения с оборудованием происходит активное налипание образовавшейся стружки на режущую кромку. Титановые сплавы склонны к появлению прижогов, образованию значимых дефектов на поверхности, высокому уровню остаточного напряжения и излишнему внутреннему растяжению. Эти факторы негативно влияют на усталостные характеристики готового изделия. Ухудшению качества деталей способствуют и другие свойства сплава, к примеру значительное повышение упругой деформации при сравнительно невысоком модуле упругости. По вышеперечисленным причинам шлифование титановых заготовок проводят исключительно на пониженных оборотах станка, задействуя специальные режимы. Для повышения качества детали упрочняют пластическим деформированием. На заключительном этапе осуществляют строгую проверку на наличие прижогов и других дефектов. Альтернативой шлифования служит лезвийная или абразивная обработка. Для окончательной шлифовки поверхности титана используют непрерывную абразивную ленту либо высокопрочные кремниевые круги.

Оптимизация механической резки, обработки титана

Титан - один из самых прочных металлов, поэтому его обработка подразумевает применение мощной техники и высокорезультативных технологий. Для решения сложных задач чаще всего используют мультизадачное оборудование - современные станки, способные объединить несколько операций. Обрабатывающие центры работают по принципам максимальной цикличности производства. Последовательную обработку каждой детали проводят при помощи разнопрофильных насадок, установленных на одном станке. Таким образом достигается оптимальная скорость проведения работы. Для механической резки, обработки титана подходят станки, адаптированные под манипуляции с вязкими и твердыми металлами. Они нацелены на снижение уровня возможных вибраций. Для уменьшения нежелательных эффектов проводят мероприятия по усилению жесткости крепления заготовки (как вариант - деталь крепят на небольшом расстоянии от шпинделя). Немаловажную роль играет качество выбранного инструментария и точное соблюдение его геометрических параметров. В промышленных масштабах используют фрезы и резцы из быстрорежущих сталей или твердых сплавов. Большое значение имеет точность торцевого и радиального биения инструмента: неправильная установка пластин, низкие допуски или высокая степень износа могут оказать негативное влияние на качество обработки. В процессе обработки титана обязательно используют галлоидосодержащие смазывающе-охлаждающие жидкости (СОЖ). Активное орошение обрабатываемых деталей понижает степень нагрева в месте реза, повышает производительность и увеличивает срок службы применяемых сверл и фрез. СОЖ образует на поверхности титановых деталей солевую корку, при нагревании вызывающую коррозию. Чтобы избежать разрушения сплава, применяют облагораживающее травление. Во время этой процедуры снимают поверхностный слой толщиной в сотые доли миллиметра. В процессе финишных операций применение охлаждающих растворов не требуется.

Механическая обработка титана – это технологический процесс, в рамках которого заготовке придают желаемую форму, размер, а также чистоту поверхности. Данный металл очень прочный, отлично противостоит коррозии, имеет небольшую массу. Эти характеристики являются его важными преимуществами и определяют широкую сферу применения титановых сплавов и самого металла в чистом виде. Чаще всего он используется в качестве конструкционного материала в:

  • ракетостроении;
  • изготовлении авиационной техники;
  • морском судостроении.

Вместе с тем, взаимодействовать с титаном достаточно сложно, это требует не только дорогостоящего высокомощного оборудования, но и профессионального подхода. Поэтому доверить выполнение сложных работ лучше опытным специалистам компании Профлазермет.

В своей работе мы используем передовые технологии, новейшие лазерные, шлифовальные станки, резаки и прочее мощное, точное оборудование, что гарантирует качество конечного результата.

Существует несколько видов механической обработки титана:

  • резка;
  • фрезеровка;
  • шлифовка;
  • сверление.

Каждая из указанных мехобработок имеет свои особенности и сложности, которые нужно учитывать при выполнении поставленных задач. Это не только выбор правильного оборудования, но также его корректная настройка, скорость выполнения каждой задачи и прочие параметры.

Резка титана: разновидности и особенности процесса

Резка металла – это самый популярный вид мехобработки материала, так как он позволяет получить заготовку нужного размера, а иногда и формы. Существует несколько видов резки данного металла, самые популярные из которых:

    • гидроабразивная;
    • лазерная;
  • механическим воздействием.

Последний способ используется крайне редко, в основном, если заготовки имеют незначительную толщину. При этом процесс требует большого количества операций по постобработке и имеет множество противопоказаний. Поэтому в большинстве случаев резку титановых заготовок осуществляют с помощью лазерного оборудования или абразивов.

Суть гидроабразивной резки заключается в том, что под воздействием очень мощной струи воды, в которую заранее поместили твердые абразивные частицы, происходит раскройка металла. У методики множество преимуществ:

  • возможность получать заготовки любой сложности;
  • высокая скорость обработки металла;
  • рез получается чистый, качественный, при этом не требуется нагрев материала;
  • минимум отходов;
  • возможна работа с титановыми заготовками большой толщины.

Но гидроабразивная резка достаточно дорогостоящая процедура, в этом заключается ее единственный недостаток.

Лазерная резка титановых листов и заготовок предусматривает использование лазерного луча высокой мощности, который, благодаря очень высоким температурам, продвигает металл. При этом во время процесса температурное воздействие оказывается только на место разреза, но не на сам металл в целом, благодаря чему заготовка не деформируется. В итоге, разрез получается идеально ровным, с точностью реза до 0,05 мм, дополнительная обработка не требуется. Во время раскройки остается минимум отходов, и скорость процесса достаточно высокая. Метод отличается не только высоким качеством, но и надежностью – при лазерной резке не бывает брака, к тому же благодаря компьютерной программе можно рассчитать самый оптимальный вариант расклада.

Фрезерование титановых изделий: особенности обработки

Фрезеровка – это процесс воздействия на металл специальными инструментами – фрезами – с целью придать заготовке желаемую форму. При этом, используя профессиональное оборудование, можно добиться высокой точности исполнения, изготовить большое количество идеально точных одинаковых элементов.

Чтобы фрезеровка титановых изделий была качественной, рекомендуется придерживаться некоторых советов:

  1. Сохраняйте небольшую площадь контакта. Одна из особенностей данного металла – плохая теплопроводность. Во время работы с данным металлом основной процент тепла передается на рабочий инструмент.
  2. Используйте фрезы с большим количеством зубьев (в идеале – десять и более). Это позволит устранить необходимость снижения подачи на зуб, и увеличит производительность.
  3. При фрезировке формируйте стружку по принципу «от толстой к тонкой», т.е. начинайте работу на максимальной толщине среза, постепенно доводя к минимальной. Таким образом толстая стружка на входе будет поглощать образовавшиеся тепло, а тонкая стружка на выходе не будет налипать.
  4. Выполняйте резание по дуге. Это не только увеличит срок службы инструмента, но и предотвратит резку рывками, обеспечит постепенное увеличение силы резания.
  5. На каждом выходе инструмента из материала снимайте 45-градусную фаску. Это позволит снизить резкость перехода и избежать повреждения поверхности заготовок.
  6. Отдавайте предпочтение фрезам, у которых большой вспомогательный задний угол. Таким образом, первая область кромки будет принимать на себя нагрузку а следующая увеличит зазор. В результате увеличивается и производительность, и срок службы инструмента.
  7. Пользуйтесь инструментом меньшего диаметра чем паз. При фрезеровке титановых изделий поглощается большое количество тепла. Для охлаждения фреза требуется пространство. В идеале, диаметр фрезы не должен превышать 70% диаметра будущего паза.

Сверление

Сверление – это разновидность мехобработки материала, при котором, используя специальный вращающийся режущий инструмент, получают отверстия разного диаметра. При сверлении титана мелкая стружка постоянно налипает на рабочую поверхность инструмента, что причиняет массу неудобств в работе. Для того, чтобы не допустить поломку инструмента, отводящие каналы сверла нужно постоянно и своевременно очищать. При этом рекомендуется использовать сверла из твердых, прочных материалов.

Шлифовка

Шлифовка относится к чистовому виду механической обработки титана. В ходе процесса с поверхности детали или заготовки снимается тонкий слой металла, для чего используются абразивные вещества. Для титановых изделий это особенно важно ввиду специфических свойств самого материала, а также титановых сплавов. На их поверхности часто образуются различные дефекты. Кроме того, на титановых сплавах часто появляются прижоги. Все это сказывается на усталостных характеристиках готовых изделий, снижает их качество.

Чтобы минимизировать риск отрицательного результата, шлифовку титановых изделий и заготовок осуществляют на низких оборотах станка, используя при этом специальные режимы. Как вариант, повысить прочность готового изделия можно с помощью пластического деформирования. После шлифования заготовку обязательно проверяют на наличие любых дефектов, включая прижоги.

На последнем этапе шлифования также можно использовать кремниевые круги или непрерывные абразивные ленты, которые сделают металлическую поверхность идеально ровной и гладкой.

Основные проблемы, которые могут возникнуть при механической обработке титана

Механическая обработка титана – сложный, технологический процесс. Основные проблемы, с которыми может столкнуться исполнитель – это низкая теплопроводность металла, а также его высокая склонность к налипанию и задиранию. Поэтому с целью минимизации неудобств во время мехобработки титановых заготовок рекомендуется использовать охлаждающие жидкости.

Еще одна проблема, с которой часто сталкиваются во время механообработки, это вибрации. Для того, чтобы ее предотвратить, рекомендуется повышать жесткость закрепления деталей. Например, хорошо зарекомендовало себя многоступенчатое крепление, при этом заготовки следует расположить максимально близко к шпинделю. Это также частично снизит вибрацию.

Существенная опасность деформационного упрочнения готовых деталей может возникнуть из-за большого выброса тепла в зоне резания. Титановые сплавы, как и сам металл в чистом виде, сохраняет прекрасные показатели прочности и твердости даже в условиях высокой температуры, в результате чего рабочий инструмент подвергается мощному воздействию и невероятной нагрузке. Для успешной работы и высокой эффективности рекомендуется использовать только качественное оборудование популярных производителей.

Немаловажен и выбор правильного режима работы, а также корректная настройка рабочих инструментов. К примеру, если в корпус фрезы неправильно установить пластины, все режущие кромки могут достаточно быстро выйти из строя.

Компания Профлазермет предлагает доступные цены на механическую обработку титана и прочих металлов современными способами. Каждому своему клиенту мы гарантируем:

  • помощь при составлении технического задания, индивидуальную разработку чертежей;
  • кратчайшие сроки выполнения заказов;
  • профессиональный подход к каждому заказу;
  • гарантию на все выполненные работы.

На сегодняшний день выделяется группа металлов, для которых необходимо создать специальные условия, прежде чем приступить к работе с ними. Обработка титана относится к этой категории работ. Все сложности и особенности процесса связаны с тем, что этот материал характеризуется повышенной твердостью.

Описание

Титан характеризуется тем, что он очень прочный, имеет серебристый цвет, а также обладает огромной устойчивостью к процессу ржавления. Из-за того, что на поверхности металла образуется пленка TiO 2 , он обладает хорошей устойчивостью ко всем внешним воздействиям. Негативно на свойствах титана может сказаться лишь влияние веществ, которые содержат в своем составе щелочь. При контакте с этими химическими веществами сырье теряет свои прочностные характеристики.

Из-за того, что продукт обладает повышенной прочностью, при токарной обработке титана приходится использовать инструмент из сверхпрочного сплава, а также создать другие особые условия при работе на токарном станке с ЧПУ.

Что нужно учитывать при обработке?

При необходимости работы с титаном обязательно нужно учитывать следующие свойства:

  • Первое - это налипание. При обработке титана с использованием токарного станка создается высокая температура, из-за которой материал начинает плавиться и прилипать к режущему инструменту.
  • Во время обработки также возникает мелкая дисперсная пыль. Она может детонировать, а потому во время работы очень важно строго соблюдать все правила техники безопасности.
  • Для того чтобы качественно осуществить процесс резки такого сверхпрочного металла, необходим инструмент, который может обеспечить подходящий режим.
  • Специально подбирать инструмент для резки приходится еще и потому, что титан характеризуется низкой теплопроводностью.

После того как обработка титана заканчивается, готовая деталь обычно подогревается, после чего ей дают остыть на открытом воздухе. Таким образом создают защитную пленку на поверхности материала, о которой было написано выше.

Классификация способов обработки

Для того чтобы осуществить резку такого сырья, необходим специальный инструмент, а также токарный станок с ЧПУ. Сам процесс разделяется на несколько операций, каждая из которых осуществляется по собственной технологии.

Что касается самих операций, то они могут быть основными, промежуточными или предварительными.

При обработке титана на станках нужно помнить, что в это время возникает вибрация. Для того чтобы частично решить данную проблему, можно крепить заготовку многоступенчатым образом, а также делать это как можно ближе к шпинделю. Чтобы уменьшить влияние температуры на процесс обработки, рекомендуется использовать резцы из мелкозернистого твердого сплава без покрытия и пластин со специальным PVD. Здесь стоит обратить внимание на то, что во время обработки титана резанием от 85 до 90% всей энергии будет превращаться в тепловую, которая будет поглощаться стружкой, обрабатываемой заготовкой, резцами и жидкостью, которая предназначена для охлаждения. Обычно температура в зоне работ достигает 1000-1100 градусов по Цельсию.

Регулировка параметров обработки

Во время обработки такого сверхпрочного материала необходимо учитывать три основных параметра:

  • угол фиксации рабочего инструмента;
  • размерность подачи;
  • скорость резания.

Если регулировать данные параметры, то с их помощью можно изменить и температуру обработки. При разных режимах обработки наблюдаются и разные параметры данных характеристик.

Для предварительной обработки со срезом верхнего слоя до 10 мм допускается припуск в 1 мм. Для работы таком режиме обычно выставляются следующие параметры. Во-первых, угол фиксации от 3 до 10 мм, во-вторых, размерность подачи от 0,3 до 0,8 мм, а выставляет 25 м/мин.

Промежуточный вариант обработки титана предполагает срез верхнего слоя от 0,5 до 4 мм, а также образование ровного слоя припуска 1 мм. Угол фиксации 0,5-4 мм, размерность подачи 0,2-0,5 мм, скорость подачи 40-80 м/мин.

Основной вариант обработки - это снятие слоя 0,2-0,5 мм, а также удаление припусков. Скорость работы 80-120 м/мин, угол фиксации 0,25-0,5 мм, а размерность подачи 0,1-0,4 мм.

Здесь также очень важно отметить, что титана на таком оборудовании всегда проводится только при наличии подачи специальной охлаждающей эмульсии. Субстанция подается под давлением на рабочий инструмент. Это необходимо для того, чтобы создать нормальный температурный режим работы.

Инструмент для обработки

Требования, которые предъявляются к инструменту для обработки материала, довольно высоки. Чаще всего обработка титана и сплавов производится при использовании резцов, у которых имеются съемные головки, а устанавливаются они на станки с ЧПУ. Во время эксплуатации рабочий инструмент подвергается абразивному, адгезийному и диффузному изнашиванию. Особое внимание стоит уделить диффузному изнашиванию, так как в это время происходит процесс растворения и режущего материала, и заготовки из титана. Наиболее активно эти процессы протекают, если температура находится в пределах от 900 до 1200 градусов по Цельсию.

Требования к инструменту

Особенность обработки титана заключается еще и в том, что необходимо подбирать рабочий инструмент в зависимости от того, какой режим работы выбран.

Для работы в предварительном режиме чаще всего используются пластины с круглой или же квадратной формой марки iC19. Изготавливаются данные пластины из специального сплава, который маркируется как Н13А и не имеет покрытия.

Для того чтобы успешно обрабатывать титан промежуточным способом, необходимо уже использовать только круглые пластины из того же сплава Н13А или же из сплава GC1155 с покрытие PDV.

Для наиболее ответственного, основного способа обработки применяются круглые насадки со шлифовальными режущими кромками, которые изготавливаются из сплавов Н13А, GC 1105, CD 10.

Важно добавить, что при обработке на токарных станках с ЧПУ допускается самое минимальное отклонение от формы детали, которая была указана в техническом задании. Чаще всего элементы, изготовленные из такого сплава, не имеют отклонений от нормы вовсе.

Основная проблема при обработке

Основная проблема, с которой сталкиваются при обработке этого сырья, это налипание и задирание на инструмент. Из-за этого термическая обработка титана очень сложна. Кроме того, достаточно много проблем доставляет и тот факт, что металл отличается очень низкой теплопроводностью. Из-за того, что другие металлы сопротивляются нагреву гораздо слабее, при контакте с титаном чаще всего они образуют сплав. Это является основной причиной быстрого износа инструментов. Для того чтобы несколько уменьшить задирание и налипание, а также отвести часть выделяемого тепла, специалисты рекомендуют делать следующее:

  • во-первых, нужно обязательно использовать охлаждающую жидкость;
  • во-вторых, при проведении заточки заготовок, к примеру, должны использоваться инструменты из таких же сверхпрочных материалов;
  • в-третьих, при обработке сырья при помощи резцов скорость значительно понижают, чтобы снизить нагрев.

Оксидирование и азотирование титана

Начать стоит с азотирования титана, так как этот вид обработки гораздо сложнее, чем оксидирование. Технологический процесс выглядит следующим образом. Изделие из титана нагревают до 850-950 градусов по Цельсию, после чего деталь необходимо поместить в среду с чистым газообразным азотом на несколько суток. После этого на поверхности элемента образуется пленка из нитрида титана, благодаря химическим реакциям, которые будут протекать в течение этих суток. Если все прошло успешно, то на титане появится пленка золотистого оттенка, которая будет отличаться повышенной прочностью и стойкостью к истиранию.

Что касается оксидирования титана, то метод является очень распространенным и принадлежит, как и предыдущий, к термической обработке титана. Начало процесса ничем не отличается от азотирования, деталь нужно нагреть до температуры в 850 градусов по Цельсию. А вот процесс остывания происходит не постепенно и в газовой среде, а резко и с использованием жидкости. Таким образом можно получить пленку на поверхности титана, которая будет прочно с ним связана. Наличие такого типа пленок на поверхности приводит к увеличению прочности и стойкости к стиранию в 15-100 раз.

Соединение деталей

В некоторых случаях изделия из титана выступают частью большой конструкции. Это говорит о том, что возникает необходимость соединения разных материалов.

Для того чтобы соединять изделия из этого сырья используется четыре основных метода. Основной из них - это сварка, используется еще пайка, механический способ соединения, предполагающий использование заклепок и соединение при помощи болтового крепления.На сегодняшний день основной метод обработки для соединения изделий в одну конструкцию - это сварка в среде инертного газа или специальных бескислородных флюсов.

Что касается пайки, то этот метод применяется только в том случае, если сварка невозможна или же нецелесообразна. Данный процесс осложняется некоторыми химическими реакциями, которые возникают в результате пайки. Чтобы выполнить механическое соединение при помощи болтов или заклепок, придется также применить специальный материал.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Обработка резанием титановых сплавов Вредность при механической обработке титановых сплавов Обработка резанием титановых сплавов Вредность при механической обработке титановых сплавов Экспертиза автомобильной дороги Экспертиза автомобильной дороги Как заменить датчик детонации автомобиля? Как заменить датчик детонации автомобиля?